MATH SA - TEST 4
Spring 2024
(Chapter 3.9, 4 \& 5.1)

Instructions on Canvas.
Show all steps, using proper notation and simplified, exact answers)
(1) Evaluate the following integrals.
(a) $\int_{0}^{8} \sqrt[3]{x} d x$

$$
\left.\int_{0}^{0} x^{1 / 3} d x=\frac{3}{4} x^{4 / 3}\right]_{0}^{8}=\frac{3}{4} \cdot 8^{4 / 3}=\frac{3}{4} \cdot 2^{4}=\frac{3}{4} \cdot 16=12
$$

(b) $\int \sec ^{2}(x) d x$ tan $+\infty$
(2) Find the derivative of the function $\mathrm{g}(\mathrm{x})=\int_{2}^{x^{3}} \sqrt{t^{2}+1} d t$

This is a function of

$$
\begin{aligned}
g^{\prime}(x) & \left.\left.=\frac{d}{d y}\right)^{\prime \prime}\left(x^{2}+1\right)\right) t \\
& =\sqrt{\left(u^{2}+1\right)\left(x^{2}\right)} \\
= & =\sqrt{x^{6}+1}\left(3 x^{2}\right)
\end{aligned}
$$

(3) A ball is thrown upward from the ground with a speed of $48 \mathrm{ft} / \mathrm{sec}$. Find a function representing its height above the ground t seconds later.

$$
\begin{aligned}
& \left\{\begin{array}{l}
a=-32 \\
v(d)=48 \\
s(0)=0 \\
v a d t=\int-32 d t=-32 t+v_{0}=-32 t+48 \\
S
\end{array}=\int v d t=\int(-32 t+48) d t=-16 t^{2}+48 t+5_{0}\right. \\
& S
\end{aligned}
$$

(4) Compute the following integral by making a u-substitution, changing to and evaluating at U's limits. (On future problems, you have your choice of how to deal with limits, but be sure to use correct notation)
$\int_{0}^{\pi / 3} \cos (x) \sin ^{3}(x) d x$
$\int_{0}^{\sqrt{3} / 2} u^{3} d u$

$$
\begin{gathered}
u=\sin x \\
d u=\cos x d x
\end{gathered}
$$

$$
\left.\frac{1}{4} u^{4}\right]_{0}^{\frac{\sqrt{3}}{2}}=\frac{1}{4} \cdot \frac{9}{16}=\frac{9}{64}
$$

(5) In this problem you will evaluate $\int_{1}^{5} x d x$ using the 4 methods discussed in class. (20 points)
a) Estimate the value of $\int_{1}^{5} x d x$ using $n=4$ subintervals and using the right endpoints as sample points.

b) Integrate $\int_{1}^{5} x d x$ directly, using the FTC part 2 and the antiderivative.

$$
\left.\frac{1}{x_{2}} x^{2}\right]_{1}^{5}=\frac{25}{3}-\frac{1}{2}=\frac{24}{2}=12
$$

c) Compute $\int_{1}^{5} x d x$ using the area interpretation (ie. find the area geometrically). (2 points)) Area of trapezoid - $\quad\left(\frac{s+1}{2}\right)(A)=12$ (can also break into Δ and $\square)$
(Continued next page)
(\#5 Continued)
d) Find the exact value of $\int_{1}^{5} x d x$ using the Riemann sum definition with sample points being right endpoints and the fact that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$

$$
\begin{aligned}
& \Delta x=\frac{b-a}{n}=\frac{4}{n} \\
& x_{i}=a+i \Delta x=1+i \frac{4}{n} \\
& f\left(x_{i}\right)=1+i \cdot \frac{4}{n}
\end{aligned}
$$

(7 points)

$$
\begin{aligned}
\int_{1}^{5} x d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) A \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+i \cdot \frac{4}{n}\right) \frac{4}{n} \\
& =\lim _{n \rightarrow \infty} \frac{4}{n}\left(\sum_{i=1}^{n}\left(1+\frac{4}{n} \sum_{i=1}^{n} i\right)\right. \\
& =\lim _{n \rightarrow \infty} \frac{4}{n}\left(n+\frac{4}{n} \frac{n(n+1)}{2}\right) \\
& =\lim _{n \rightarrow \infty}\left(4+\frac{8 n(n-1)}{n^{2}}\right)=12
\end{aligned}
$$

e) Should we expect all the answers, in (a)-(d) to be the same? Why/Why not?

Part a is an approximation, so does not necessarily match.
Parts bud are exact, however, so should match

$$
\begin{array}{ll}
\text { (a) } \int_{-1 / 2}^{0} \frac{1}{\sqrt{1-2 x}} d x & \begin{array}{l}
u=1-2 x \\
d u=-2 d x
\end{array} \\
-\frac{1}{2} \int_{2}^{1} u^{-1 / 2} d u \\
\left.-\frac{1}{2}-2 u^{1 / 2}\right]_{2}^{1} \\
\left.=-u^{1 / 2}\right]_{2}^{1}=-1+\sqrt{2} \Rightarrow u=1
\end{array}
$$

(b) $\int_{-1}^{1} 4 x \sqrt{x^{2}+1} d x=0$ since $4 x \sqrt{x^{2}+1}$ is an odd function'
(c)

$$
\begin{aligned}
\int \frac{4 x^{6}-x}{2 x^{3}} d x & -\int\left(2 x^{3}-\frac{1}{2 x^{2}}\right) d x \\
& =\int\left(2 x^{3}-\frac{1}{2} x^{-2}\right) d x \\
& =\frac{1}{2} x^{4}+\frac{1}{2} x^{-1}+c \\
& =\frac{1}{2} x^{4}+\frac{1}{2 x}+c
\end{aligned}
$$

$$
\begin{aligned}
& \text { (d) } \int x^{3} \sqrt{x^{2}-3} d x \quad u=x^{2}-3 \quad x^{2}=6+3 \\
& d u=2 x d x \Rightarrow \frac{1}{2} d u=x d x \\
& \int x^{2} \cdot x \cdot \sqrt{x^{2}-3} d x \\
& \int(u+3) \sqrt{u} \quad \frac{1}{2} d u \\
& \frac{1}{2} \int\left(u^{3 / 2}+3 u^{1 / 2}\right) d u \\
& \frac{1}{2}\left(\frac{2}{5} u^{5 / 2}+2 u^{3 / 2}\right)+c \\
& \frac{1}{5}\left(x^{2}-3\right)^{5 / 2}+\left(x^{2}-3\right)^{3 / 2}+c
\end{aligned}
$$

(6) cont'd Evaluate the following integrals. Give simplified, exact answers.
(e) $\int \frac{\cos (\sqrt{x})}{\sqrt{x}} d x$

$$
u=\sqrt{x}
$$

$$
d u=\frac{1}{2 \sqrt{x}} d x
$$

$2 \int \cos u d y$
$2 \sin u+c$

$$
2 \sin \sqrt{x}+c
$$

(f) $\int_{0}^{4}\left|x^{2}-9\right| d x$

Consicter the sign of $x^{2}-9$

so

$$
\begin{aligned}
\int_{1}^{4}\left|x^{2}-9\right| d x & =\int_{0}^{3}-\left(x^{2}-9\right) d x+\int_{3}^{4}\left(x^{2}-9\right) d x \\
& \left.\left.=\frac{-x^{3}}{3}+9 x\right]_{0}^{3}+\frac{1}{3} x^{3}-9 x\right]_{3}^{4} \\
& =18+\frac{64}{3}-36-(-18) \\
& =\frac{64}{3}
\end{aligned}
$$

(7) Find the area under one "hump" of the sine curve $y=\sin (2 x)$

$$
\int_{0}^{\pi / 2} \sin 2 x d x
$$

$$
\begin{aligned}
& u=2 x \\
& d u=2 d x
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{2} \int_{0}^{\pi} \sin u d u & \left.=-\frac{1}{2} \cos u\right]_{0}^{\pi} \\
& =-\frac{1}{2}(\cos \pi-\cos 0) \\
& =-\frac{1}{2}(-2) \\
& =1
\end{aligned}
$$

(6) Given the region bounded by the graphs of $y=x^{2}$, and $y=2 x+3 \quad$ (12 points)
(a) Find the intersection points

$$
\begin{aligned}
& x^{2}=2 x+3 \\
& x^{2}-2 x-3=0 \\
& (x-3)(x+1)=0 \\
& x=3,-1
\end{aligned}
$$

(b) Set up, but do not evaluate, an integral expression to find the area by integrating with respect to x .

$$
\int_{-1}^{3}\left(2 x+3-x^{2}\right) d x
$$

(c) Set up, but do not evaluate, an integral expression to find the area by integrating with respect to y.

$$
\int_{0}^{1}(-\sqrt{y}-\sqrt{y}) d y+\int_{1}^{9}\left(\sqrt{y}-\frac{y-3}{3}\right) d y
$$

(d) Find the area by evaluating one of the integrals above.

$$
\begin{aligned}
\int_{-1}^{3}\left(2 x+3-x^{2}\right) d x & \left.=x^{2}+3 x-\frac{1}{3} x^{3}\right]_{-1}^{3} \\
& =9-\left(-\frac{5}{3}\right) \\
& =\frac{27}{3}+\frac{5}{3}=\frac{32}{3}
\end{aligned}
$$

MATH SA - TEST 4

Spring 2024

(Chapter 3.9, 4 \& 5.1)

Instructions on Canvas.

Show all steps, using proper notation and simplified, exact answers)

(1) In this problem you will evaluate $\int_{0}^{2}(4 x-4) d x$ using the 4 methods below, as discussed in class.
a) Using actual functional values (not estimates from the graph), estimate the value of $\int_{0}^{2}(4 x-4) d x$ using $n=4$ subintervals and using the left endpoints as sample points. Draw the rectangles you used in this approximation.
$A \approx\left(f(0)+f\left(\frac{1}{2}\right) \vdash f(1)+f\left(\frac{3}{2}\right)\right) \Delta x$

$$
\begin{aligned}
& =(-4+-2+0+2) \frac{1}{2} \\
& =-2
\end{aligned}
$$

b) Integrate $\int_{0}^{2}(4 x-4) d x$ directly, using the FTC part 2 and the antiderivative. (5 points) $\left.\int_{0}^{2}(4 x-4) d x=2 x^{2}-4 x\right]_{0}^{2}=0$
c) Compute $\int_{0}^{2}(4 x-4) d x$ using the geometric area interpretation Area Above Areabelow
(Continued next page)

$$
\begin{aligned}
\frac{1}{2} \cdot 1 \cdot 4 & -\frac{1}{2}(1)(4) \\
2 & -2 \\
0 &
\end{aligned}
$$

[^0](2 points))

(\#5 Continued)
d) Find the exact value of $\int_{0}^{2}(4 x-4) d x$ using the Riemann sum definition with sample points being right endpoints and the fact that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
\[

$$
\begin{aligned}
& \int_{0}^{2}(4 x-4) d x=\lim _{n \rightarrow \infty}\left(4\left(i-\frac{1}{n} i\right)-4\right) \frac{1}{n}-4 \\
& \int_{0}^{2}(4 x-4) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(4\left(i \cdot \frac{F}{n}\right)-4\right) \frac{2}{n} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{16}{n} 2 i^{i}-\frac{8}{n}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{16}{n^{2}} \sum i-\frac{8}{n} \sum 1\right) \\
& =\lim _{n \rightarrow \infty} / \frac{16}{n^{2}} \frac{n(n+1)}{2}-\frac{8}{n} n \\
& =\lim _{n \rightarrow \infty}\left(\frac{8(n+1)}{n}-8\right) \\
& =\lim _{n \rightarrow \infty}\left(8+\frac{8}{n}-8\right) \\
& =0
\end{aligned}
$$
\]

e) Should we expect all the answers, in (a)-(d) to be the same? Why/Why not?

Answers b,c,d should match because They all give the exact value of the integral. Part (a), however, is just an estimate
(2) Evaluate the following integrals.
(a) $\int_{0}^{8} \sqrt[3]{x} d x=\int_{0}^{8} x^{1 / 3} d y=\frac{3}{4} x^{4 / 3}=\frac{3}{4} \cdot 8^{4 / 3}=\frac{3}{4} \cdot 2^{4}=12$
(b) $\int\left(6 x^{2}-5 x+3\right) d x=2 x^{3}-\frac{5}{2} x^{2}+3 x+$
(c) $\int \sin (5 x) d x$

$$
\begin{aligned}
u & =5 x \\
d u & =5 d x
\end{aligned}
$$

$\frac{1}{5} \int \sin u d u$
$-\frac{1}{5} \cos u+c=-\frac{1}{5} \cos (5 x)+c$
(3) Find the derivative of the function $g(x)=\int_{x}^{3} \cos ^{2} t d t=-\int_{3}^{x} \cos ^{2} t d t$
(3 points)

$$
g^{\prime}(x)=\frac{d}{d x}\left(-\int_{3}^{x} \cos ^{2} t d t=-\frac{d}{d x} \int_{3}^{x} \cos ^{2} t d t=-\cos ^{2} x\right.
$$

(4) Evaluate the following integrals. Give simplified, exact answers.
(a) On this problem only, you MUST make a u-substitution and change to U's limits. On subsequent definite integrals you can choose to switch to u's limits or not, but use proper notation.

$$
\begin{aligned}
& \int_{0}^{\pi / 6} \cos ^{3}(x) \sin (x) d x \quad \begin{array}{c}
u=\cos x \\
d u=\sin x
\end{array} \quad \begin{array}{c}
x=\frac{\pi}{6} \\
x=0
\end{array} \rightarrow \quad u=\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2} \\
& \int_{0}^{\pi / 6} \cos ^{3}(x) \sin (x) d x=-\int_{1}^{\sqrt[3]{2}} u^{3} d u=\cos 0=1 \\
&\left.\left.=\frac{-1}{4} u^{4}\right]_{1}^{\sqrt{3 / 2}}=\frac{-1}{4}\left(\frac{9}{16}-1\right)=\frac{-1}{4}\left(\frac{-7}{16}\right)=\frac{7}{64}-(1)^{4}\right)
\end{aligned}
$$

(b) $\quad \int x^{2}\left(x^{3}+2\right) d x=\int\left(x^{5}+2 x^{2}\right) d x$

$$
\frac{1}{6} x^{6}+\frac{2}{3} x^{3}+c
$$

(c) $\int_{0}^{\sqrt{\frac{\pi}{4}}} 4 x \sin \left(x^{2}\right) d x$

$$
u=x^{2}
$$

$$
d u=2 x d x
$$

$$
\left.\int_{0}^{\pi / 4} 2 \cos u d u=2 \sin u\right]_{0}^{\pi / 4}=2 \sin \frac{\pi}{4}=\sqrt{2}
$$

| | $x^{2}-4!$ | |
| :--- | :---: | :---: | :---: |
| (d) $\int_{0}^{3}\left\|x^{2}-4\right\| d x$ | $\longleftrightarrow x^{2}+4$ | $x^{2}-4$ |
| | | i_{2} |

Need to rewrite $\left|x^{2}-4\right|$ as a piecewise defined funch

$$
\begin{aligned}
& \left|x^{2}-4\right|=\left\{\begin{array}{l}
x^{2}-4 \text { when } x^{2}-4 \geq 0 \Rightarrow(-\infty,-2] \cup[2,0) \\
-\left(x^{2}-4\right) \text { when } x^{2}-4<0 \Rightarrow(-2,2) \\
\int_{0}^{2}-x^{2}+4 d x+\int_{2}^{3}\left(x^{2}-4\right) d x \\
\left.\left.=-\frac{1}{3} x^{3}+4 x\right]_{0}^{2}+\frac{1}{3} x^{3}-4 x\right]_{2}^{3} \\
=-\frac{8}{3}+8+9-12-\left(\frac{8}{3}-8\right) \\
=23 / 3
\end{array}\right.
\end{aligned}
$$

(e) $\int \frac{x^{3}}{\left(x^{4}+7\right)^{2}} d x$

$$
\begin{aligned}
& u=x^{4}+7 \\
& d u=4 x^{3} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4} \int \frac{1}{u^{2}} d u \\
& =\frac{1}{4} \int u^{-2} d u \\
& =-\frac{1}{4} u^{-1}+C \\
& =-\frac{1}{4 u}+C=-\frac{1}{4\left(x^{4}+7\right)}+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { (f) } \begin{array}{ll}
\int x^{2} \sqrt{x+5} d x & \begin{array}{l}
u=x+5 \\
d u=d x
\end{array} \\
\int(u-5)^{2} \sqrt{u} d u
\end{array} \\
& \int\left(u^{2}-10 u+25\right) \sqrt{u} d u \\
& \int\left(u^{5 / 2}-10 u^{3 / 2}+25 u^{1 / 2}\right) d y \\
& =\frac{2}{7} u^{7 / 2}-10 \cdot \frac{2}{5} u^{5 / 2}+25 \cdot \frac{2}{3} u^{3 / 2}+C \\
& =\frac{2}{7}(x+5)^{7 / 2}-4(x+5)^{5 / 2}+\frac{50}{3}(x+5)^{3 / 2}+C
\end{aligned}
$$

(g) $\int_{-3}^{3} 4 x \sqrt{x^{2}+1} d x=0 \quad f(x)=4 x \sqrt{x^{2}+1}$ is an odd function-
(5) A ball is thrown upward from the ground with a speed of $112 \mathrm{ft} / \mathrm{sec} . \quad V / 0)=112$
(a) Find its height above the ground t seconds later
(7 points) $\quad \delta(0)=0$

$$
\begin{aligned}
& a=-32 f t / \sec ^{2} \\
& v=\int a d t=-32 t+V_{0}=-32 t+112 \\
& s=\int v d t=-16 t^{2}+112 t+5_{0} \\
& s(t)=-16 t^{2}+112 t
\end{aligned}
$$

Max height when $s^{\prime}(t)=v(t)=0 \quad-32 t+112=0$

$$
s\left(\frac{7}{2}\right)=196 \mathrm{ft} \text { max ht. }
$$

$$
t=\frac{112}{32}=\frac{7}{2}
$$

(6) Given the shaded region shown, bounded by the graphs of $y=x^{2}, y=-x+6$, and the x axis, (12 points)

intersection

$$
\begin{aligned}
& y=x^{2} \\
& y=6-x
\end{aligned} \Rightarrow x^{2}=6-x \quad \begin{aligned}
& x^{2}+x-6=0 \\
& \\
& \\
& \\
& x+3 /(x-2)=0 \\
& x=2
\end{aligned}
$$

(b) Set up, but do not evaluate, an integral expression to find the area by integrating with respect to x .

$$
\int_{0}^{2} x^{2} d x+\int_{2}^{6}(6-x) d x
$$

(c) Set up, but do not evaluate, an integral expression to find the area by integrating with respect to y.

$$
\int_{0}^{4}(b-y-\sqrt{y}) d y
$$

(d) Find the area by evaluating one of the above.

$$
\begin{aligned}
\int_{0}^{4}(6-y-\sqrt{y}) d y & \left.=6 y-\frac{1}{2} y^{2}-\frac{2}{3} y^{3 / 2}\right]_{0}^{4} \\
& =24-8-\frac{16}{3} \\
& =16-\frac{16}{3}=\frac{32}{3}
\end{aligned}
$$

[^0]:

